►acile Synthesis of 2,4-Dioxo-1,2,3,4tetrahydroquinazolines by Sulfur-Assisted Carbonylation with Carbon Monoxide

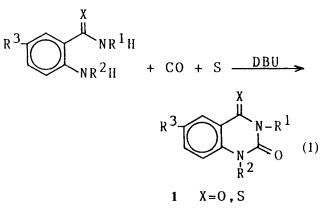
Toshiyuki Miyata, Takumi Mizuno,* Yoshio Nagahama, Ikuzo Nishiguchi, and Tsuneaki Hirashima

Osaka Municipal Technical Research Institute, 1-6-50, Morinomiya, Joto-ku, Osaka 536, Japan Noboru Sonoda

Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan

Received 27 November 1990.

ABSTRACT


2,4-Dioxo-1,2,3,4-tetrahydroquinazolines were easily synthesized in excellent yields by sulfur-assisted carbonylation of 2'-aminobenzamides with carbon monoxide in the presence of a base, such as DBU or DBN.

INTRODUCTION

The carbonylation of amides with carbon monoxide has usually been performed in the presence of a transition metal catalyst. For example, the synthesis of imides from amides using a cobalt [1] and palladium catalyst [2] was reported. However, studies of this carbonylation of amides promoted by nontransition metal elements have been almost unexplored.

The sulfur-assisted carbonylation of amines with carbon monoxide to synthesize urea derivatives [3] and S-alkyl thiolcarbamates [4] was discovered about thirty years ago. Recently, our extensive studies of this carbonylation of other substrates having relatively weak nucleophilicities have led us to the successful development of a cyclic urea synthesis from aromatic amines [5], synthesis of thiolcarbonates [6] or carbonates [7] from alcohols, synthesis of dithiocarbonates from water [8], and carbonylation of active methylene compounds [9]. However, the carbonylation of amides using carbon monoxide could hardly be performed by hitherto known methods because of their low nucleophilicities.

We now wish to report a new and convenient synthesis of 2,4-dioxo-1,2,3,4-tetrahydroquinazolines (1) through the first example of carbonylation of aromatic amides with carbon monoxide promoted by elemental sulfur in the presence of an appropriate base (Equation 1).

RESULTS AND DISCUSSION

Examination of the reaction conditions for this carbonylation using 2-aminobenzamide as a starting substrate showed that the nature of the base and

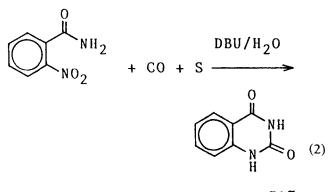
^{*}To whom correspondence should be addressed.

the reaction temperature produced remarkable effects (Table 1), and that the reaction took place smoothly at 80°C in the presence of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or DBN (1,5-diazabicyclo[4.3.0]non-5-ene) to give 2,4-dioxo-1,2,3,4-tetrahydroquinazoline (1a) almost quantitatively. The COS-DBU complex, which proved to be a thermally unstable white solid that regenerated carbonyl sulfide on warming to 45°C, was formed from COS and DBU [10]. The excellent effect of DBU for carbonylation of 2-aminobenzamide can be understood on the basis that the COS-DBU complex might act as an active COS-transfer species.

Substituted 2,4-dioxo-1,2,3,4-tetrahydroquinazolines (**1a-g**) were synthesized by the carbonylation of the corresponding 2-aminobenzamides with carbon monoxide and sulfur in the presence of DBU under similar conditions (80°C, 30 kg/cm²) (Table 2). Mostly, quinazolines (**1a-c**, **1e-g**) were obtained in excellent yields. However, 1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydroquinazoline (**1d**) was not obtained, presumably because of the steric hindrance of the two methyl groups.

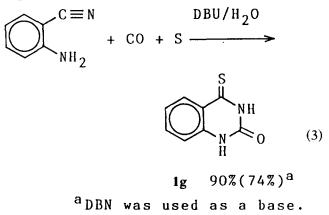
It was also found that both reduction of a nitro group and carbonylation of an amide group were

TABLE 1 Effects of Bases and Reaction Temperature


80	
00	98
120	74
100	85
60	28
80	90
80	0
80	0
80	0
80	0
	100 60 80 80 80 80

^b 1,4-Diazabicyclo[2.2.2]octan	e
---	---

TABLE 2	Synthesis of 2,4-Dioxo-1,2,3,4-
tetrahydroq	uinazolines (1a–g)


X	R^1	R^2	R ³		Yield (%)
0	н	н	H	1a	98
0	CH₃	н	н	1b	86
0	н	CH₃	Н	1c	98
0	CH₃	CH ₃	н	1d	0
0	н	н	CH₃	1e	97
0	н	н	CI	1f	100
S	н	Н	н	1g	99
ª iso	olated yields				

accomplished in a one-pot operation by addition of water (10 mmol, 0.18 mL) to generate hydrogen sulfide in situ. Carbonyl sulfide easily undergoes hydrolysis with water to form hydrogen sulfide and carbon dioxide [11]. Reduction of the nitro group may be effected by hydrogen sulfide. When 2-nitrobenzamide was used as a starting material in the presence of carbon monoxide, sulfur, and water, 2,4-dioxo-1,2,3,4-tetrahydroquinazoline (1a) was obtained under similar conditions in a reasonable yield (Equation 2).

1a 71%

Furthermore, the reaction of 2-aminobenzonitrile using water caused an addition reaction of hydrogen sulfide, generated in situ, to the cyano group to form 2-oxo-4-thio-1,2,3,4-tetrahydroquinazoline (**1g**) directly in good yield (Equation 3).

2,4-Dioxo-1,2,3,4-tetrahydroquinazolines (1) are generally available by the reaction of 2'-aminobenzamides and urea at high temperature [12]. The present sulfur-assisted carbonylation of 2-aminobenzamides with carbon monoxide may provide a useful alternative method for the synthesis of 1.

EXPERIMENTAL

IR spectra were recorded on a JASCO A-3 spectrometer. ¹H-NMR spectra were recorded in CDCl₃ on a JEOL FX 90Q spectrometer using TMS as an internal standard. Mass spectra were measured with a JEOL JMS-DX-303-HF spectrometer. Melting

points were recorded with a Yanaco MICRO MELT-ING POINT APPARATUS or a Mettler FP 5 (uncorrected). All reactions were carried out using a 100 mL stainless steel autoclave (SUS-316) made by Taiatsu Scientific Glass Co., Ltd. The 2'-aminobenzamides, which are unavailable from commercial sources, were prepared by the esterification of the corresponding anthranilic acids with methanol followed by amidation with ammonia water (or aq methylamine). 2-Aminobenzthioamide was prepared by the reaction of 2-aminobenzonitrile with hydrogen sulfide.

Typical Procedure for The Synthesis of 1a

Into a 100 mL stainless steel autoclave were placed 2-aminobenzamide (1.36 g, 10 mmol), powdered sulfur (30 mmol, 0.96 g), DBU (50 mmol, 7.5 mL), and THF (20 mL), and the mixture was stirred with a magnetic stirring bar under a nitrogen atmosphere. The autoclave was then flushed several times with carbon monoxide and finally charged with carbon monoxide until the pressure was 30 kg/cm² at room temperature. The carbonylation was carried out at 80°C for 4 h with vigorous stirring. The reaction mixture was poured into aq 1N HCl (200 mL). and a pale yellow solid was deposited. The resulting solid was washed with benzene (100 mL) and ether (50 mL) and purified by recrystallization from acetic afford 2,4-dioxo-1,2,3,4-tetrahydroacid to quinazoline (1a) in 98% yield (1.59 g).

2,4-Dioxo-1,2,3,4-tetrahydroquinazoline (1a). Mp >300°C (>350°C [12]); IR (KBr) 3200, 3075 (N–H), 1710, 1675 cm⁻¹ (C=O); ¹H-NMR (d₆-DMSO) δ = 7.08–7.36 (2H, m), 7.52–7.80 (1H, m), 7.88–8.04 (1H, m), 11.14 (1H, brs), 11.26 (1H, brs); MS (70 eV) *m*/*z* (rel intensity) 162 (M⁺; 98), 119 (100), 92 (71); exact MS (70 eV) *m*/*z* calcd. 162.0429, obsd. 162.0419.

3-Methyl-2,4-dioxo-1,2,3,4-tetrahydroquinazoline (**1b**). Mp 248°C (248–250°C [13]); IR (KBr) 3200, 3075 (N–H), 1720, 1665 cm⁻¹ (C=O); ¹H-NMR (d₆-DMSO) δ = 3.20 (3H, s), 6.90–7.40 (2H, m), 7.40–8.08 (2H, m), 11.32 (1H, brs); MS (70 eV) *m*/*z* (rel intensity) 176 (M⁺; 87), 119 (100); exact MS (70 eV) *m*/*z* calcd. 176.0586, obsd. 176.0606.

1-Methyl-2,4-dioxo-1,2,3,4-tetrahydroquinazoline (**1c**). Mp >300°C; IR (KBr) 3190, 3060 (N–H), 1715, 1700, 1670 cm⁻¹ (C=O); ¹H-NMR (d₆-DMSO) δ = 3.84 (3H, s), 7.20–7.56 (2H, m), 7.62–8.12 (2H, m), 11.54 (1H, brs); MS (70 eV) *m/z* (rel intensity) 176 (M⁺; 100), 105 (44), 78 (40); exact MS (70 eV) *m/z* calcd. 176.0586, obsd. 176.0600.

6-Methyl-2,4-dioxo-1,2,3,4-tetrahydroquinazoline (1e). Mp >300°C; IR (KBr) 3180, 3060 (N–H), 1705 cm⁻¹ (C=O); ¹H-NMR (d₆-DMSO) δ = 2.34 (3H, s), 7.12 (1H, d, J = 8 Hz), 7.50 (1H, d, J = 8 Hz), 7.72 (1H, s), 11.08 (1H, brs), 11.22 (1H, brs); MS (70 eV) *m*/*z* (rel intensity) 176 (M⁺; 100), 133 (77); exact MS (70 eV) *m*/*z* calcd. 176.0586, obsd. 176.0621.

6-Chloro-2,4-dioxo-1,2,3,4-tetrahydroquinazoline (1f). Mp >300°C; IR (KBr) 3200, 3060 (N–H), 1705 cm⁻¹ (C==O); ¹H-NMR (d₆-DMSO) δ = 7.24 (1H, d, *J* = 8 Hz), 7.70 (1H, d, *J* = 8 Hz), 7.82 (1H, s), 11.30 (1H, brs), 11.44 (1H, brs); MS (70 eV) *m*/*z* (rel intensity) 196 (M⁺; 100), 153 (76), 76 (36); exact MS (70 eV) *m*/*z* calcd. 196.0040, obsd. 196.0047.

2-Oxo-4-thio-1,2,3,4-tetrahydroquinazoline (1g). Mp 271.4°C (270°C [14]); IR (KBr) 3100 (N–H), 1710 cm⁻¹ (C==O); ¹H-NMR (d₆-DMSO) δ = 7.00–7.50 (2H, m), 7.50–7.96 (1H, m), 8.24–8.56 (1H, m), 11.64 (1H, brs), 12.74 (1H, brs); MS (70 eV) *m*/*z* (rel intensity) 178 (M⁺; 100), 150 (21); exact MS (70 eV) *m*/*z* calcd. 178.0201, obsd. 178.0231.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (No. 02247101, No. 02247103) from the Ministry of Education, Science, and Culture, Japan.

REFERENCES

- [1] J. Falbe, F. Korte, Angew. Chem., 74, 1962, 291; J. Falbe, F. Korte, Chem. Ber., 95, 1962, 2680.
- [2] R. C. Larock, C. A. Fellows, J. Am. Chem. Soc., 104, 1982, 1900.
- [3] R. A. Franz, F. Applegath, J. Org. Chem., 26, 1961, 3304; R. A. Franz, F. Applegath, F. V. Morriss, F. Baiocchi, J. Org. Chem., 26, 1961, 3306; R. A. Franz, F. Applegath, F. V. Morriss, F. Baiocchi, C. Bolze, J. Org. Chem., 26, 1961, 3309.
- [4] D. W. Grisley, Jr., J. A. Stephens, J. Org. Chem., 26, 1961, 3568.
- [5] T. Miyata, N. Kambe, S. Murai, N. Sonoda, I. Nishiguchi, T. Hirashima, *Nippon Kagaku Kaishi*, 1987, 1332.
- [6] T. Mizuno, I. Nishiguchi, T. Hirashima, A. Ogawa, N. Kambe, N. Sonoda, *Tetrahedron Lett.*, 29, 1988, 4767; T. Mizuno, F. Nakamura, Y. Ishino, I. Nishigichi, T. Hirashima, A. Ogawa, N. Kambe, N. Sonoda, *Synthesis*, 1989, 770.
- [7] T. Mizuno, F. Nakamura, Y. Egashira, I. Nishiguchi, T. Hirashima, A. Ogawa, N. Kambe, N. Sonoda, Synthesis, 1989, 636.
- [8] T. Mizuno, T. Yamaguchi, I. Nishiguchi, T. Okushi, T. Hirashima, Chem. Lett., 1990, 811.
- [9] T. Mizuno, I. Nishiguchi, T. Hirashima, A. Ogawa, N. Kambe, N. Sonoda, *Synthesis*, 1988, 257.
- [10] A. Ogawa, N. Kambe, S. Murai, N. Sonoda, Tetrahedron, 41, 1985, 4813.
- [11] R. J. Ferm, Chem. Rev., 1957, 621.
- [12] Beil., 24, 373.
- [13] P. Molina, M. Alajarin, A. Vidal, *Tetrahedron Lett.*, 29, 1988, 3849.
- [14] R. B. Trattner, G. B. Elion, G. H. Hitchings, D. M. Sharefkin, J. Org. Chem., 29, 1964, 2674.